© Springer 2006

Biodiversity and Conservation (2006) 15:1271–1301 DOI 10.1007/s10531-005-2576-4

Vascular plant species inventory of a Philippine lowland rain forest and its conservation value

GERHARD LANGENBERGER, KONRAD MARTIN^{*} and JOACHIM SAUERBORN

Institute of Plant Production and Agroecology in the Tropics and Subtropics (380), Agroecology Section, University of Hohenheim, 70593 Stuttgart, Germany; *Author for correspondence (e-mail: martin-k@uni-hohenheim.de; phone: +49-711-459-3605; fax: +49-711-459-3843)

Received 22 June 2004; accepted in revised form 8 February 2005

Key words: Conservation value, Dipterocarp forests, Gene bank, Molave forest, Native species, Species richness, Tropical rain forest, Vascular plant species

Abstract. The Philippines are one of the most important biodiveristy hotspots on earth. Due to the extraordinary rate of environmental destruction, leaving only 3% of the land with primary forest, this biodiversity is at high risk. Despite that situation information on Philippine forest vegetation is fragmentary and focused on trees. This study aimed at analysing forest remnants in the Leyte Cordillera on the Island of Leyte, and at evaluating their role as refuge to the largely destroyed lowland forest vegetation. A total of 49 plots (100 m² each) between 55 and 520 m a.s.l. were studied. All vascular plant species except epiphytes were included. Records include 685 taxa from 289 genera and 111 families, representing nearly 8% of the known Philippine vascular plant species. More than half (52%) of the species are Philippine endemics. A number of 41 tree species, or 6% of all taxa recorded, are included in the IUCN red list, either as vulnerable, endangered, or critically endangered. Life form composition was dominated by phanerophytes (65.3%), followed by lianas and chamaephytes (17.1 and 16.9%, respectively). The most common families were the Rubiaceae with 35 and the Euphorbiaceae with 32 species. All five Philippine dipterocarp forest types as well as the molave forest type were represented by typical tree species. The area provides an important gene bank of the highly threatened Philippine lowland forest vegetation and is of high value for biodiversity conservation. Additionally, it can play an important role as seed source of valuable tree species for the increasing initiatives to rehabilitate and reforest degraded land with native species.

Introduction

The destruction of tropical rain forests is still continuing at high rates (FAO 2003). This process, especially threatens the earth's biodiversity hotspots such as the Philippines (Myers et al. 2000; Brooks et al. 2002). Despite this, there are only very few studies worldwide which aimed at the documentation of the total plant species richness of such sites. Most inventories were restriced to selected life forms such as ground herbs (e.g. Kiew 1987; Poulsen and Balslev 1991; Poulsen 1996) or trees of a defined minimum diameter (e.g. Valencia et al. 1994; Lieberman et al. 1996; Newbery et al. 1996; Rennolls and Laumonier 2000; Slik et al. 2003). Vascular plant species composition of tropical lowland forests was studied in Ghana on 0.5- and 1-ha plots by Hall and Swaine (1981), in Amazonia on 0.02-ha plots by Takeuchi (1960) and on 10 non-contiguous plots of 0.1 ha by Duivenvoorden

(1994), in Ecuador on 0.1-ha plots of three lowland forest types by Gentry and Dodson (1987), and in stratified plots with a total area of about 2 ha in Puerto Rico by Smith (1970). In Southeast Asia, Kochummen et al. (1992) studied the trees and shrubs (>1 cm diameter at breast height (dbh)) in a 50-ha plot in the Pasoh Forest Reserve in Malaysia. The most comprehensive study including all vascular plants as well as mosses was conducted by Whitmore et al. (1985) on a single 100-m² plot in the lowland rain forest of Costa Rica. However, no study representing a complete inventory of vascular plant species richness of any site of lowland rain forest in Southeast Asia was found.

The Philippines are among the most seriously depleted tropical countries with only 3% of the land area still covered by primary forest (Myers et al. 2000). From 1990 to 2000, the Philippines lost 1.4%, or 89,000 ha, of the forest area annually (FAO 2003). At the same time, the Philippine archipelago is one of the most important biodiversity hotspots on earth (Myers et al. 2000) with high proportions of endemic plant and animal species (Heaney and Regalado 1998). The endemism rate of plants was estimated to be 39% (Davis et al. 1995), but for certain taxa, it can be much higher. For example, 11 of 12 species of pitcher plants (*Nepenthes* spp.) known from the Philippines are endemic (Cheek and Jebb 2001). Similarly, there are high rates of endemism among the fauna. Referring to terrestrial vertebrates, 64% of the archipelago's land mammals are endemic, as well as 44% of the breeding land birds, 68% of the reptiles, and ca. 78% of the amphibians (Heaney and Regalado 1998). Most of them depend on forest ecosystems.

Despite the ecological uniqueness on the one hand and the extensive destruction on the other, the study of Philippine forest vegetation has been neglected (Tan and Rojo 1989; Kartawinata 1990; Soerianegara and Lemmens 1994). Much of the current knowledge is still based on studies conducted in the early 20th century (Whitford 1906; Whitford 1911; Brown and Mathews 1914; Brown 1919), which were mainly dealing with timber trees under economical aspects. Recent studies focused on the vegetation of montane and submontane forest types on different islands. However, in most cases (Aragones 1991; Pipoly and Madulid 1998; Proctor et al. 1998; Hamann et al. 1999) these were largely restricted to trees of a defined size, which usually is ≥ 10 cm dbh. Buot and Okitsu (1997) only considered woody plants higher than 1.3 m, and Ingle (2003) those of at least 5 cm dbh. The only data without size limitations are provided by Gonzales-Salcedo (2001) from Mt. Amuyao, Luzon, at elevations of 1600–1800 a.s.l. and by Gruezo (1998) from the highly degraded vegetation of Pagbilao Grande Island. No study dealing with lowland forest vegetation was found in the literature.

In order to provide more substantial information on species richness and composition of Philippine lowland forests, we analysed forest remnants in the rugged foothills of the Leyte Cordillera. The island of Leyte is located in the central part of the Philippine archipelago and represents a typical example of the environmental situation in the Philippines. In 1987, the remaining forest cover of Leyte was 12%, and in 1994 only 2% of the island's area have been

estimated to be primary forest (Dargantes and Koch 1994). More recent data (DENR 1998) show that about 40% of the land area of Leyte is covered by grassland and barren land, resulting from abandoned cultivation and grazing land that marginalised in productivity through erosion and leaching. Another 40% of the island's area is under coconut plantations. The remaining area is composed of settlements, agricultural land and forest. In the view of this situation, the objectives of this study were (a) to analyse the vascular plant species composition and diversity of selected plots of mature primary forest and (b) to evaluate the role of the study area as refuge to lowland forest vegetation and its significance for conservation and as a gene bank.

Material and methods

Study area

The Island of Leyte (Figure 1) belongs to the biogeographic region of the Eastern Visayas (DENR and UNEP 1997). It is located between $9^{\circ}55'$ N–11°48' N and 124°17' E–125°18' E, with an extension of 214 km from north to south. Located offshore the northeastern part of Leyte is the island of Samar. The southern part of Leyte is exposed to the Pacific Ocean (Leyte Gulf).

Leyte is characterised by the north–south running Leyte Cordillera which is part of the Philippine Fault Line. The Cordillera reaches a maximum elevation of ca. 1350 m (Mt. Lobi) in the northern part of the island. As geologically young volcanic mountain range, it shows a typical rugged topography of narrow ridges and steep slopes, where landslides are common (Bremer 1995, 1999; Walsh 1996). In its foothills, patches of primary forest without discernible human interference can still be found although the island is densely populated (ca. 262 inhabitants/km² as calculated after: NSCB RU-8 2001). The coastal plains have already been deforested in the first half of the last century (Barrera et al. 1954).

The study area is located in the western part of the Leyte Cordillera, ca. 8 km north of the provincial capital of Baybay, in the foothills of Mt. Pangasugan (1150 m, 10°46' N, 124°50' E). In this part of the island, the Cordillera reaches close to the coast. Large parts of the mountain's western range are extremely steep and are free from trees of this reason. In the eastern part of the Cordillera, the slope has a lower gradient.

Primary forest can be found from about 250 m a.s.l. up to the mountain's summit at 1150 m a.s.l. In hillsides below this elevation, the forests has largely been replaced by coconut plantations and slash and burn agriculture. Only along the small creeks, near natural vegetation can still be found at these lower elevations. Above ca. 600 m a.s.l., the lowland forest formation changes into mossy forest, with its stunted trees and a rich epiphyte community.

Within the study area, no recent logging was observed, although forest clearing continues at other localities of the mountain. This can be explained by the area's status as Forest Reserve of the Leyte State University. Despite this, rattan collection and hunting was observed within the Forest Reserve.

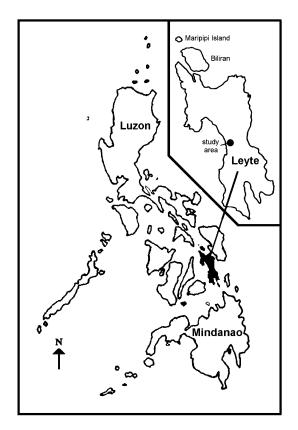


Figure 1. The Philippine archipelago, the Island of Leyte, and the location of the study area.

Geology and soils

The soil type in the primary forest between 370 and 520 m a.s.l. is a haplic Andosol with rudic phase (FAO/UNESCO 1988) overlying basaltic and andesitic breccia (Zikeli 1998). The soil at lower elevations (100 m a.s.l.) has been classified as haplic Alisol (FAO/UNESCO 1988) over basalt (Asio 1996).

Climate

According to the climatic classification of the 'Modified Corona's System', Leyte is climatically divided (Kintanar 1984). Southern Leyte belongs to the climatic type II (i.e. no pronounced dry season), but exhibits a distinct rainfall peak in December and January as a result of the northeast monsoon. The northern part of Leyte which includes the study area has been assigned to climatic type IV, showing a more or less even rainfall distribution throughout

the year. The standardization of the rainfall pattern in northern Leyte compared to that of southern Leyte might be explained by the protective effect of the Island of Samar off the northeast-coast of Leyte, although Samar's mountains are lower than those of Leyte (ca. 850 m a.s.l.).

Local climatic conditions have been analysed from a 23-years period (1976-1998) of record by using data from the PAGASA (Philippine Atmospheric, Geophysical and Astronomical Services Administration) weather station on the campus of the Leyte State University (7 m a.s.l.), ca. 1–3 km west of the study plots. The annual average temperature is 27.4 °C and the average annual precipitation is 2586 mm. Highest precipitation occurs during November to January. Lowest rainfall is observed between March and May. On average, all months receive at least 100 mm precipitation, i.e. there is no dry month according to the definition of Walsh (1996). However, drought periods (i.e. less than 50 mm of monthly precipitation according to Walsh 1996) of up to 4 months have been recorded during El Niño Southern Oscillation events. The general rainfall patterns and the climatic conditions measured at the PAGASA station are more similar to climatic type II with its clear impact of the northeast monsoon than to climatic type IV, implying that neither the mountains of Samar nor the Leyte Cordillera itself causes a distinct rain shadow west of Mt. Pangasugan.

Orographic rainfalls are an important factor in the Leyte Cordillera, especially in the vicinity of the mountain summits. The summit of Mt. Pangasugan is often observed being cloud covered, and during field work heavy rainfalls have been experienced, while the coastal plain did not receive any precipitation.

An important climatic feature of the area are typhoons. Leyte lies at the southern margin of the typhoon tracks entering the Philippines, and is hit at a rate of five typhoons in three years, mainly during the summer months (Parong 1984; cited in Kintanar 1984).

Vegetation analysis

Field studies were conducted in 1997 and 1998. The attempt to identify a minimum area in mature primary forest failed due to the heterogeneity of the vegetation. A plot size allowing a reasonable number of replications proved to be 100 m^2 . Where relief conditions and homogeneity of the vegetation allowed, plots were arranged along a catena from ridge to river bank. The 100-m^2 plots were generally designed as quadrats, but on narrow ridges and river banks, other rectangular design was used due to relief constraints. A total of 49 plots was established, with 15 on the ridge, 21 on slopes, and 11 on riverbanks. Two plots were established in ca. 6-year-old land slide successions, with one of them located ca. 2 km south of the main study area.

The vegetation analysis procedure was based on a 'nested quadrat design' (Kent and Coker 1992). All plants > 2.5 m were identified from the total plots (100 m²). On central subplots of 25 m², all plants \leq 2.5 m

as well as the lianas were considered. Records included epiphytic and climbing plants on the stem bases of trees up to a height of 2.5 m. Crown epiphytes were not included in the analysis, but epiphytes found on the ground were identified and added to the species lists. From species which could not be identified in the field, voucher specimens were collected. Tall trees were sampled with the help of a tree climber. However, no samples were taken from erect and climbing palms (rattans), because this would have been destructive and the chance of identification was very low due to the lack of fertile specimens. Therefore, most palms had to be distinguished as morphospecies.

Taxa were assigned to life forms on the base of field observations, or with the help of literature information in the case of juveniles. Life form classification followed Ellenberg and Mueller-Dombois (1967). Plant samples collected in this study were deposited at the Department of Plant Breeding, Herbarium, Leyte State University, ViSCA, Baybay, Leyte, 6521A, Philippines.

Species identification and nomenclature

Identification of specimens was conducted with the help of literature and specialists. Publications referring to the Philippine flora included de Guzman et al. (1986), Merrill (1912), Pancho (1983), Santos et al. (1986), van Steenis (1950-ongoing), and Zamora and Co 1986). Sources referring to neighbouring countries, which also include many Philippine taxa, were used in addition (Henderson 1974a, b; Ng 1978, 1989; Keng 1983, 1990; Whitmore 1983a, b; Corner 1988; Anonymous 1993, 1994, 1996; Soepadmo and Wong 1995; Soepadmo et al. 1996). Identification of seedlings, infertile and juvenile plants was not possible in all cases. For pre-identification of taxa and delimitation of such characters in the above mentioned literature, the specific publications by van Balgooy (1997a, b) and Keller (1996) were used. Tree seedlings were identified with help of Ng (1991) and Burger (1972).

In addition, plants were identified by taxonomists from the Philippine National Herbarium, Manila, the National Herbarium of the Netherlands, Leiden Branch, and collaboratively during meetings of the Philippine Native Plant Group. Nomenclature followed various sources as cited above. However, priority was given to the Flora Malesiana (van Steenis 1950-ongoing), whenever possible. The legumes were assigned to the traditional family of Leguminosae. Scientific names were not derived from the translation of local names in any case.

Data analysis

Species richness, diversity and evenness were determined for each of the 49 plots. Only those plants rooting within the plots were considered in the

analysis. The Shannon-Index (H') was used as a robust and simple diversity measure (Magurran 1988). For the analysis of species dominance patterns, Evenness (E) based on the Shannon-Index was calculated for each of the plots.

To assess the area's value as a refuge to Philippine tree species, the characterization of forest types by Whitford (1911) was used. His classification and characterization is based on the occurrence of typical tree species and tree species combinations. He often used vernacular names or typical families or genera as e.g. 'Apitong' for Dipterocarpus spp. to characterise his forest types. For many of these vernacular names a scientific species could not be assigned with certainty, and therefore, were not used for comparisons. Whitford (1911) pointed out that the description of his forest types was based on a still fragmentary knowledge of Philippine forests. Most of his 'typical' tree species with few exceptions such as mangroves – occur in the other forest types as well. For example, many species of the dipterocarp forest types occur at wet localities in the Molave forest (limestone forest). On the other hand, the typical Molave forest species also exist in the dipterocarp forest types, especially on dry sites. Of such reasons, Whitford's (1911) forest types are primarily related to the major habitat conditions in the Philippines and do not represent real plant associations. The comparison of the species recorded in this study with Whitford's (1911) forest types merely demonstrates the diverse habitat conditions in the present study area. Unfortunately, not much work has been conducted so far to improve Whitford's system, and information on species composition of the undergrowth vegetation, which might be especially valuable to characterise habitat conditions (Schulze and Whitacre 1999), is still missing.

Results

From the 49 plots, a total of 685 taxa was recorded. Of these, 58.3% were identified to species level, 86.2% to genus level, and 96.7% to family level. The remaining 3.3% of the taxa could only be assigned to higher taxonomic levels. All taxa identified to species level are listed in the Appendix. Species inventory was clearly dominated by angiosperms, accounting for 92.1% of all species. The pteridophytes represented 7.5% of the species. Only three species of gymnosperms (*Podocarpus rumphii, Gnetum gnemon, G. latifolium*) were found (Table 1).

More than half (52%) of all species identified are endemic to the Philippines, including one endemic genus (*Greeniopsis*, Rubiaceae). The most common families were the Rubiaceae (35 species) and the Euphorbiaceae (32 species), followed by the herbaceous family of Araceae and the erect and climbing palms (Arecaceae) with 28 species each. The Meliaceae and Moraceae included 27 species each (Figure 2). The ratio between the number of genera and the number of species ranged between 1:1.5 (Anacardiaceae) and 1:6.7 (Moraceae).

The frequency of taxa was low. Nearly half (48.5%) of all taxa were recorded from only one of the 49 plots, and nearly one third (30.5%) of the taxa were

	Spermatophytes (%)		Pteridophytes (%)	Total (%)
	Gymnosperms	Angiosperms		
Families	2 (1.8)	94 (84.7)	15 (13.5)	111 (100)
Genera	2 (0.7)	261 (90.3)	26 (9)	289 (100)
Species	3 (0.4)	631 (92.1)	51 (7.5)	685 (100)

Table 1. Taxonomic composition of 49 non-contiguous plots (100 m² each) in lowland forest

remnants of the study area in the foothills of Leyte Cordilliera.

Rubiaceae (1,75) Euphorbiaceae (2,13) Araceae (3,11) Arecaceae (4,67) Meliaceae (3,38) Moraceae (6,75) Leguminosae (2,30) Urticaceae (3,14) Annonaceae (2,00) Dipterocarpaceae (3,00) Lauraceae (2,43) Sapindaceae (1,88) Myrtaceae (3,75) Clusiaceae (4,00) Sterculiaceae (2,50) Anacardiaceae (1,50) Myristicaceae (1,80) Rutaceae (2,25) Species Araliaceae (2,25) Genera Sapotaceae (3,00) 5 10 15 20 25 30 35 40 0 No.of taxa

Figure 2. The 20 most common plant families recorded from 49 plots (100 m² each) in the study area. Figures in brackets indicate the ratio between the number of genera and the number of species.

represented by only one single individual. Very few species showed high frequencies as e.g. the two tree species, *Calophyllum blancoi* (present in 32 plots) and *Dacryodes rostrata* (present in 31 plots), which was due to a high rate of juveniles.

The average number of species per plot was 47 and ranged between 17 and 80. Shannon diversity (H') reached values between 2.2 and 3.9, and evenness (E) ranged between 0.64 and 0.98. The species–area curve for all plots shows a steady increase of species numbers with only a weak tendency to level off (Figure 3). The flattening of the curve at its beginning is the result of the river bank vegetation which was comparatively species poor and homogenous. The species–area curve starts to rise again with the addition of the slope plots.

Life form composition is clearly dominated by phanerophytes (65.3% of all taxa), followed by lianas (17.1%) and chamaephytes (16.9%). Geophytes were rare (0.7%) and largely represented by few ground orchids. Hemicryptophytes and therophytes were absent (Figure 4). Epiphytes were not the focus of this study and are therefore not included in the calculation of life form composition. A rough estimate of epiphyte contribution to the area's species inventory is ca. 10%. The most conspicuous epiphytic plant group observed were orchids. Many of the vegetation clusters observed in the tree crowns were composed of the accumulation of orchid bulbs belonging to a single species (e.g. *Grammatophyllum multiflorum*).

The following taxa occurring in the study plots have been classified by Soepadmo (1995) as endangered and economically important lowland forest genera in SE Asia: *Anisoptera*, *Dipterocarpus*, *Parashorea*, *Shorea*, *Vatica* (Dipterocarpaceae), *Artocarpus* (Moraceae), *Mangifera* (Anacardiaceae), and *Calanus* (Arecaceae). Additionally, 41 of the tree species recorded are listed as endangered for the Philippines by IUCN (2000). Of these, 23 are classified as vulnerable, one as endangered, and 17 as critically endangered (see Appendix).

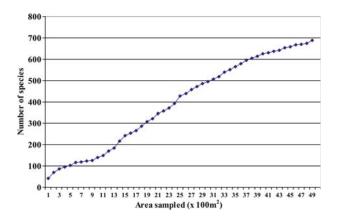
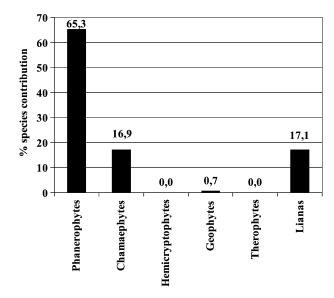



Figure 3. Species-area curve for 49 plots (100 m² each) in the study area.

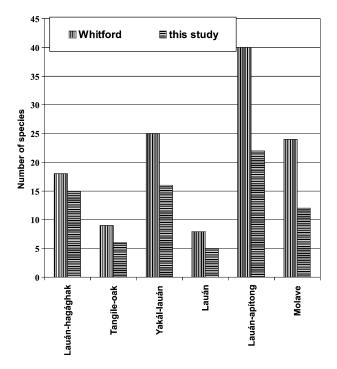
Figure 4. Life form spectrum (after Ellenberg and Müller-Dombois 1967) of species recorded from 49 plots (100 m^2 each) in the study area.

Discussion

The 685 taxa recorded from the 49 plots account for nearly 8% of the ca. 8900 vascular plant species so far described for the Philippines (Davis et al. 1995). Although the plots were not contiguous and species numbers can therefore be expected to be higher than in contiguous plots (Whitmore 1985) this figure is high, considering the small overall study area (4900 m² in total). Only very few datasets cover tropical lowland forest vegetation comprehensively and are therefore suitable for comparison. The only study using the same plot size was conducted by Whitmore et al. (1985) in the tropical lowland rain forest of Costa Rica, who analysed a plot of 100 m², considering all vascular plants. They recorded a total of 233 species, including 59 (25%) epiphyte species. In the present study, the highest number of species recorded from a single 100-m² plot was 80 and thus much lower than the number found by Whitmore et al. (1985). However, in the present study the vegetation up to 2.5 m tall as well as the lianas were collected from subplots of 25 m², and crown epiphytes were excluded. Despite this, the maximum number of vascular plant species on 100 m^2 plots in the study area can expected to be clearly lower than the number of 233 species recorded by Whitmore et al. (1985).

An estimate of the overall vascular plant species richness of Mt. Pangasugan area, including mossy forest as well as the different stages of succession, results in 1500–2000 species. This estimate is based on the very conservative assumption that 50% of the lowland forest species was recorded in this study, and that the mossy forest has a similar species richness as a 1-ha plot studied by

Meijer (1959) in a montane rainforest in Indonesia (333 vascular plant species). The numbers of tree species given by Ingle (2001) (100 species ≥ 5 cm dbh) and Hamann et al. (1999) (92 species ≥ 10 cm dbh) for 0.75- and 1-ha plots, respectively, in Philippine mountain environments show that the overall species richness including all life forms can be expected to be roughly similar to that of Meijer (1959) in Indonesia.


Representation of taxa

The composition of taxa observed in this study is similar to other areas in Southeast Asia. Differences to such sites are related to the proportions of families and result mainly from different inventory approaches. For trees alone, the dominance of the Dipterocarpaceae and the Euphorbiaceae concerning number of species is well documented (Manokaran and Kochummen 1990; Sist and Saridan 1998; Slik et al. 2003; Wilkie et al. 2004). Sist and Saridan (1998) report that the Dipterocarpaceae represent 70% of all trees \geq 50 cm dbh in a primary forest in East Kalimantan. In our study, the Dipterocarpaceae were the most common family in the canopy layer (12 of 44 species).

Turner (1994) analysed the vascular flora of Singapore and its main habitat types from herbarium collections. The Orchidaceae are the most speciose family in his taxonomic spectrum. This reflects the large number of orchid species in Malesia (6500 species according to Soepadmo 1995). In our study, however, Orchidaceae are poorly represented because we did not include crown epiphytes. Without considering the orchids in both studies, the pteridophytes are the most speciose group, followed by the Rubiaceae and the Euphorbiaceae in both studies. The other predominant families in terms of species richness listed by Turner (1994) are Annonaceae, Moraceae, Arecaceae/Palmae, Myrtaceae, Melastomataceae and Lauraceae. With exception of the Melastomataceae, these are also the most speciose families in our study (Figure 2).

Representation of forest types

The rugged relief of the study area represents a broad spectrum of Philippine habitats. The comparison of the tree species recorded from our study with the typical tree species composition of the forest types described by Whitford (1911) showed a high degree of correspondence. Many tree species typical of the five dipterocarp forest types as well as the Molave type (Figure 5) were present. From the 18 tree species listed by Whitford (1911) as typical for the Lauán-hagághak, 15 were also present in our study area. Originally, this forest type is established on lowland plains on wet soils (Whitford 1911), but was transformed into rice fields in the study area. However, tree species representing this type of forest still occur on the banks of the small creeks at low

Figure 5. Comparison of the number of characteristic species of the different lowland forest types in the Philippines (after Whitford 1911) with the number of respective species recorded in this study.

elevations. The typical tree species of other forest types were also well represented (Figure 5). The high number of Molave type species (50% of the typical species as mentioned by Whitford 1911) in the study area is remarkable, as this forest represents dry limestone areas (Whitford 1911). This is another indication that the area's vegetation might be strongly influenced by drought periods.

Life form composition

The dominance of trees and phanerophytes is a typical feature of tropical rain forests (Richards 1996). In our study, Phanerophytes account for 65.3% of the species. Richards (1996) provides figures from a rain forest in Guyana, which are based on the Raunkiaer System (Raunkiaer 1934) and cannot be directly compared with our data. We therefore recalculated his data by excluding the lianas from the phanerophytes and excluded the epiphytes in addition. This resulted in a life form composition of 60% phanerophytes, 16% chamaephytes, and 24% lianas. A similar recalculation of figures provided by Cromer and Pryor (1942) for a rain forest in Queensland results in 77.1% phanerophytes, 12.5% chamaephytes, and 10.4% lianas. Figures for a terra firme rain forest in

Brasilia (Cain et al. 1956) are: phanerophytes 74.3%, chamaephytes 0.9%, hemicryptophytes 2.8%, geophytes 0.9%, lianas 12.8%, and epiphytes 8.3%.

Therophytes and hemicryptophytes are usually absent from undisturbed tropical rain forests (Richards 1996). Geophytes are also often absent as in Richards' Guyana study or represented by few species as in the present study (0.7%), where they were mainly made up of ground orchids.

The estimated proportion of epiphyte species of the total number of species in this study (ca. 10%) is clearly lower than the numbers given by Whitmore et al. (1985) (25%) for Costa Rica or by Gentry and Dodson (1987) (35%) for Ecuador.

Conservation value

Kochummen et al. (1992) stated that comparatively small areas might represent high numbers of a regional flora. They found that their 50-ha plot in the Pasoh Forest Reserve (Malaysia) included 25% of all trees and shrubs (≥ 1 cm dbh) of the Malay Peninsula. In our study, an overall sample area of approximately half hectare included ca. 8% of all Philippine vascular plant species. Given the small area considered as well as the fact that neither the successional vegetation nor the mossy forest is included, the representation of Philippine flora in the Mt. Pangasugan area is clearly higher than 8%.

The proportion of 52% endemic taxa recorded in this study is clearly higher than the proportion of 39% stated as an average for the Philippines (Davis et al. 1995). This result agrees with Ashton (1993) who stated that the south-eastern part of the Philippines is especially rich in endemic plants. The area's endemism might be even higher than 52%, as a number of taxa could not be identified. For example, only 3 of the 16 rattan species (Arecaceae) recorded, which generally show a high degree of endemism (Dransfield 1990), could be assigned to a scientific name. Two of them were Philippine endemics.

Another aspect referring to the conservation value of the area is the occurrence of 41 tree species in the red list of IUCN (2000). However, from the species recorded from this study, other than trees are not represented in the red list. Despite this, it can be expected that many of the non-tree taxa recorded are threatened by habitat destruction as well. For example, no rattans are listed by IUCN although this plant group is still heavily exploited and shows high rates of endemism. The IUCN red list seems to have a strong focus on well known and economically important tree species. This is supported by the fact that only dipterocarps are classified as critically endangered, although many other tree species are more rare in the study area. This was e.g. true for the valuable tree species *Heritiera sylvatica* (Sterculiaceae) and *Xanthostemon verdugonianus* (Myrtaceae) which were known by local farmers from only one mature tree each in the entire western foothills of Mt. Pangasugan.

Taken together, the Mt. Pangasugan region on Leyte represents a unique refuge for a high number of species, which are characteristic of all Philippine dipterocarp forest types and the molave type. In view of the large areas of degraded land in the Philippines, the conservation value of the Mt. Pangasugan region is very high and represents an important gene bank of the Philippine forest vegetation.

Acknowledgements

This study was part of the ViSCA-gtz Applied Tropical Ecology Program (PN 95.2290.5–001.00) and partly funded by the Tropical Ecology Support Program (TÖB) of GTZ (PN 90.2136.1–03.107). We are grateful to the President of the Leyte State University, Dr. P.P. Milan and her staff for their support and help. We are also grateful to the Cienda San Vicente Farmer Association (CSVFA) and their community organiser Marlito Bande, who made the extensive field trips possible. Special thanks to the curator of the Philippine National Herbarium, Dr. Madulid, and his staff, as well as to the director of the National Herbarium of the Netherlands, Leiden branch, Prof. Baas and his staff who helped to put species identification on a firm ground. We are also very grateful to Leonardo Co, Nina Ingle, David and Luze Bicknell, Franz Seidenschwarz, and B.C. Tan for various assistance. We also like to thank the two anonymous referees for their comments and constructive criticism.

Appendix

Species list of the vascular plant species found in 49 plots (100 m^2 each) in the foothills of the Leyte Cordillera at Mt. Pangasugan, Leyte, Philippines.

The list includes only those species which could be identified to species level. Some species recorded outside the plots are provided in addition.

Numbers in brackets following the species name indicate the first voucher specimen collected of this species.

Life form classification of species is based on observations of mature individuals in the study area, or from species descriptions in literature. Life form definitions follow Ellenberg and Mueller-Dombois (1967) with a minor revision by Richter (1997). MacP, Macrophanerophyte ($\geq 20-50$ m); MesP, Meso-phanerophyte ($\geq 5-20$ m); MiP, Microphanerophyte ($\geq 2-5$ m); NP, Nano-phanerophyte ($\geq 1-2$ m); NP herb, herbaceous Nanophanerophyte; Ch, Chamaephyte (≤ 1 m); Ch frut, fruticose Chamaephyte; Ch suff, suffruticose Chamaephyte; Ch herb, herbaceous Chamaephyte; G rhiz, rhizome Geophyte; PL, Phanerophytic Liana; r PL, root PL; st PL, winding PL; el PL, tendril PL; d PL, spread climber; E, Epiphyte.

Species classified by IUCN (2000) as endangered are listed along with their status in bold letters. Short definitions of the status are:

CR, critically endangered ('... facing an extremely high risk of extinction in the wild in the immediate future ...'); EN, endangered ('... not critically endangered but facing a very high risk of extinction in the wild in the near future ...'); VU, vulnerable ('... not critically endangered or endangered but facing high risk of extinction in the wild in the medium-term future ...').

For comprehensive definitions and criteria of classification see www. iucnredlist.org/search-basic.html

Spermatophyta	Life form
Aceraceae Acer laurinum Hassk. (1221)	MacP
Actinidiaceae Saurauia cf. denticulata C.B. Rob. (1078) Saurauia samarensis Merr. (235)	MiP MiP
Alangiaceae <i>Alangium longiflorum</i> Merr. (1331) VU	MesP
Amaranthaceae Deeringia polysperma (Roxb.) Moq. (2214)	Ch herb
Anacardiaceae Dracontomelon dao (Blco.) Merr. & Rolfe (660) Dracontomelon edule (Blco.) Skeels Koordersiodendron pinnatum (Blco) Merr. (162) Mangifera altissima Blco. (971) VU Rhus taitensis Guill. (818) Semecarpus cuneiformis Blco. (538)	MacP Mes MacP MacP MesP MiP
Annonaceae Alphonsea arborea (Blco.) Merr. (1009) Anaxagorea javanica Bl. (1509) Artabotrys cf. rolfei Vid. (2159) Cananga odorata (Lamk.) Hook. f. & Thoms. Goniothalamus elmeri Merr. (327) Meiogyne virgata (Bl.) Miq. Papualthia cf. lanceolata (Vid.) Merr. (206) Popowia pisocarpa (Bl.) Endl. (1054)	MesP MiP el PL MesP MiP MesP MesP MesP
Apocynaceae Alstonia macrophylla Wall. ex. G. Don (1774) Alstonia scholaris (L.) R. Br. Kibatalia blancoi (Rolfe) Merr. (467) Lepiniopsis ternatensis Val. (2220) Tabernaemontana pandacaqui Poir. (140) Voacanga globosa (Blco.) Merr. (218)	MesP MesP MesP MesP MicP MiP
Araceae Alocasia cf. zebrina Schott ex van Houtte (1677) Amorphophallus paeoniifolius (Dennst.) Nicolson (1924) Costus speciosus (J. Konig) Sm	Ch herb NP herb NP herb

Spermatophyta	Life form
Pothos cylindricus Presl (1226) Raphidophora korthalsii Schott (881)	r PL d PL
Araliaceae Arthrophyllum ahernianum Merr. (1911) Osmoxylon trilobatum (Merr.) Philipson (220) Polyscias nodosa (Bl.) Seem.	MesP NP MesP
Arecaceae Calamus cf. merrillii Becc. Caryota cf. cumingii Lodd. ex Mart Caryota cf. mitis Lour. (560) Daemonorops cf. mollis (Blco.) Merr. (593) Korthalsia laciniosa Mart. (1120) Pinanga maculata Porte Caryota rumphiana Mart. var. philippinensis Becc.	d PL MiP MesP PL d PL MiP MacP
Aristolochiaceae Aristolochia philippinensis Warb. (702)	Ch suff
Asclepiadaceae Hoya multiflora Bl. (689)	PL
Asteraceae Vernonia arborea BuchHam. (826)	MesP
Bignoniaceae Oroxylum indicum (L.) Vent. Radermachera pinnata (Blco.) Seem. (1129)	MesP MesP
Burseraceae Canarium asperum Benth. (265) Canarium denticulatum Bl. (428) Canarium euryphyllum Perk. (1265) Canarium gracile Engl. (611) Canarium hirsutum Willd. (1714) Dacryodes rostrata (Bl.) H. J. Lam (247)	MacP MesP MacP MesP MesP MacP
Caprifoliaceae Sambucus javanica Reinw. ex Bl.	MiP
Casuarinaceae Gymnostoma rumphianum (Miq.) L.A.S. Johnson (1915)	MesP
Cecropiaceae Poikilospermum erectum (Blco) Merr. (321) Poikilospermum suaveolens (Bl.) Merr. (328)	d PL d PL
Celastraceae Bhesa paniculata Arn. (812) Euonymus cochinchinensis Pierre (495) Euonymus javanicus Bl. (232) Lophopetalum javanicum (Zoll.) Turcz. (1127)	MesP MesP MesP MacP
Chloranthaceae Chloranthus erectus (BuchHam.) Verdc. (1522) Sarcandra glabra (Thunb.) Nakai (562)	Ch suff Ch frut

Spermatophyta	Life form
Chrysobalanaceae	
Maranthes corymbosa Bl. (790)	MacP
Clusiaceae	
Calophyllum blancoi Pl. & Tr. (278)	MesP
Calophyllum soulattri Burm. f. (1250)	MesP
Cratoxylum formosum Benth. & Hook. f. ex Dyer (452)	MesP
Combretaceae	
Terminalia microcarpa Decne. (672)	MacP
Terminalia nitens Presl (481) VU	MesP
Commelinaceae	
Floscope scandens Lour.	Ch herb
Forrestia hispida Less. & A. Rich. (423)	Ch herb
Pollia sorzogoniensis (E. Meyer) Steud.	Ch herb
Pollia thyrsiflora (Bl.) Steud.	Ch herb
Rhopalephora cf. vitiensis (Seem.) Fader (2102)	Ch herb
Connaraceae	
Agelaea borneensis (Hook. f.) Merr. (491)	st PL
Connarus culionensis Merr. (686)	PL
Connarus semidecandrus Jack (623)	PL
Ellipanthus tomentosus Kurz (396)	MesP
Crypteroniaceae	
Crypteronia cumingii (Planch.) Planch. ex Endl. (1693)	MesP
Cunoniaceae	
Weinmannia cf. hutchinsonii Merr. (130)	MesP
Datiscaceae	
Octomeles sumatrana Miq.	MacP
Dilleniaceae	
Dillenia megalantha Merr. (2007) VU	MesP
Dillenia philippinensis Rolfe VU	MesP
Tetracera fagifolia Bl. (674)	st PL
Dioscoreaceae	
Dioscorea hispida Dennst.	PL
Dipterocarpaceae	
Anisoptera thurifera Foxw. ssp. thurifera (353)	MacP
Dipterocarpus gracilis Bl. (486) CR	MacP
Dipterocarpus validus Bl. CR	MacP
Hopea acuminata Merr. (292) CR	MacP
Hopea malibato Foxw. ex Elm. (20) CR	MacP
Hopea philippinensis Dyer (925) CR	MacP
Hopea plagata (Blco.) Vid. (305) CR	MacP
Parashorea malaanonan (Blco.) Merr. (267) CR	MacP
Shorea almon Foxw. (430) CR	MacP
Shorea assamica Dyer forma philippinensis (Brandis) Sym. (269) CR	MacP
Shorea astylosa Foxw. (1796) CR	MacP
Shorea cf. hopeifolia (Heim) Sym. (2110) CR	MakP
Shorea contorta Vid. (1001) CR	MacP

Spermatophyta	Life form
Shorea falciferoides Foxw. ssp. falciferoides (290) CR	MacP
Shorea guiso (Blco) Bl. (384) CR	MacP
Shorea palosapis (Blco) Merr. (263) CR	MacP
Shorea polysperma (Blco) Merr. (297) CR	MacP
Vatica mangachapui Blco. (528) EN	MacP
Ebenaceae	
Diospyros blancoi A. DC. (163) VU	MacP
Diospyros cf. nitida Merr. (1901)	MiP
Diospyros curranii Merr. (1631)	MesP
Diospyros multibracteata Merr. (598)	MiP
Diospyros pilosanthera Blco.	MesP
Diospyros pyrrhocarpa Miq. (385)	MesP
Elaeagnaceae	
Elaeagnus triflora Roxb. var. triflora (412)	dPL frut
Elaeocarpaceae	
Elaeocarpus cumingii Turcz. (1123)	MesP
Euphorbiaceae	
Acalypha amentacea Roxb. (254)	NP
Antidesma digitaliforme Tul. (371)	NP
Antidesma nitidum Tul. (268)	MiP
Antidesma tomentosum Bl. (919)	MicP
Aporosa benthamiana Hook. f. (573)	MiP
Baccaurea tetrandra (Baill.) Müll. Arg. (360)	MesP
Bridelia glauca Bl. (233)	MesP
Claoxylon brachyandrum Pax & K. Hoffm. (379)	MesP
Cleistanthus cf. glaber Airy Shaw (628) Cleistanthus sumatranus (Miq.) Müll. Arg. (396)	MesP MesP
Coliaeum luzonicum Merr.	MiP
Croton cascarilloides Raeusch. (205)	NP
Drypetes cf. megacarpa (Bl.) Pax & Hoffm. (374)	MiP
Drypetes longifolia (Merr.) Pax et Hoffm. (372)	MiP
Glochidion rubrum Bl. (715)	MiP
Macaranga caudatifolia Elm. (735) VU	MiP
Macaranga grandifolia (Blcol.) Merr. VU	MesP
Macaranga hispida (Bl.) Muell-Arg.	MiP
Macaranga tanarius (L.) MuellArg.	MesP
Mallotus cf. paniculatus (Lam.) MuellArg. (330)	MesP
Mallotus floribundus (Bl.) MuellArg. (228)	MesP
Mallotus lackeyi Elm. (1800)	MesP
Mallotus philippensis (Lam.) MuellArg. (302)	MesP
Neotrewia cumingii (MuellArg.) Pax & Hoffm. (343)	MesP
Omalanthus populneus (Geisel.) Pax	MiP
Phyllanthus leytensis Elm. (250)	Ch frut
Suregada glomerulata (Hassk.) Jones (287)	NP
Fagaceae	
Lithocarpus buddii (Merr.) A. Camus (15)	MacP
Lithocarpus caudatifolia (Merr.) Rehd. (555)	MesP
Lithocarpus coopertus (Blco) Rehd. (387)	MesP

Spermatophyta	Life form	
Flacourtiaceae Casearia cf. mindanaensis Merr. (1675) Casearia grewiaefolia Vent. var. gelonioides (Bl.) Sleum. (794) Flacourtia cf. indica (Burm. f.) Merr. (378) Osmelia philippina (Turcz.) Benth. (352)	P MesP MesP MesP	
Flagellariaceae Flagellaria indica L. (1128)	el PL	
Gesneriaceae Cyrtandra angularis Elm. (2212) Cyrtandra glaucescens Kranzl. (960) Monophyllaea merrilliana Kranzl. (2027) Rhynchoglossum obliquum Bl.	Ch herb Ch herb Ch herb Ch herb	
Gnetaceae Gnetum gnemon L. var. gnemon (375) Gnetum latifolium Bl.	MesP PL	
Hamamelidaceae Sycopsis dunnii Hemsl. (739)	MesP	
Hernandiaceae Illigera megaptera Merr. (721)	PL	
Icacinaceae Gomphandra cumingiana (Miers) FVill. (1118) Gonocaryum calleryanum (Baill.) Becc. (700) Miquelia celebica Bl. Phytocrine macrophylla (Bl.) Bl. var. macrophylla Platea excelsa Bl. var. borneensis (Heine) Sleum. (1217)	MesP MesP PL PL MesP	
Ixonanthaceae Ixonanthes petiolaris Bl.	MesP	
Juglandaceae Engelhardtia serrata Bl. (411)	MacP	
Lamiaceae Gomphostemma javanicum (Bl.) Bth. (285)	Ch herb	
Lauraceae Actinodaphne apoensis Merr. (1083) Actinodaphne bicolor (Elm.) Merr. Actinodaphne cf. multiflora Benth. (833) Caryodaphnopsis tonkinensis (Lec.) Shaw (441) Cinnamomum mercadoi Vid. (468) VU Endiandra coriacea Merr. (1883) Litsea garciae Vid. (478) Litsea leytensis Merr. (805) VU	MesP MesP MesP MacP MesP MesP MesP	
Neolitsea cf. vidallii Merr. (272) VU	MiP	

Spermatophyta	Life form
Leeaceae Leea aculeata Bl. ex Spreng. Leea guineensis G. Don (255) Leea quadrifida Merr. (546)	Mip MiP MiP
Leguminosae <i>Afzelia rhomboidea</i> (Blco.) Vid. VU <i>Albizia procera</i> (Roxb.) Benth. <i>Albizia saponaria</i> (Lour.) Bl. ex Miq. <i>Archidendron clypearia</i> var. <i>casai</i> (Blco.) I.C. Nielsen (1082) <i>Archidendron pauciflorum</i> (Benth.) Nielsen (1852) <i>Archidendron scutiferum</i> (Blco.) I.C. Nielsen (323) <i>Bauhinia integrifolia</i> Roxb. ssp. <i>cumingiana</i> (Benth.) K. & S.S. Larsen (364)	MesP MacP MesP MiP MesP PL
Dalbergia cf. mimosella (Blco) Prain (1435) Desmodium laxum DC. (820) Entada phaseoloides (L.) Merr. Erythrina subumbrans (Hassk.) Merr. Euchresta horsfieldii (Lesch.) Benn. (847) Kingiodendron alternifolium (Elm.) Merr. & Rolfe (357) Ormosia calavensis Azaola Pterocarpus indicus Willd. VU Wallaceodendron celebicum Koord. (395)	MesP Ch herb el PL MacP Ch herb MacP MesP MacP
Liliaceae <i>Dianella ensifolia</i> (L.) DC.	Ch herb
Loganiaceae Fagraea auriculata Jack ssp. auriculata (851) Fagraea racemosa Jack ex Wall. Strychnos luzoniensis Elm. (748)	st PL MiP el PL
Magnoliaceae Magnolia liliifera (L.) Baill. var. angatensis (719)	MesP
Marantaceae Donax cannaeformis (Forst. f.) K. Schum. (1006)	MiP
Marattiaceae Angiopteris evecta (Forst.) Hoffm. (1188) Marattia pellucida Presl (1444)	NP herb Ch herb
Melastomataceae Memecylon paniculatum Jack (311)	MiP
Meliaceae Aglaia argentea Bl. (642) Aglaia costata Merr. (275) VU Aglaia elliptica Bl. (1295) Aglaia luzoniensis (Vid.) Merr. & Rolfe (511) Aphanamixis polystachia (Wall.) R.N. Parker (941) Chisocheton ceramicus (Miq.) C. DC.) (1184) Chisocheton cumingianus (C. DC.) Harms (211)	MesP MesP MiP MesP MesP MesP
Chisocheton pentandrus (Blco.) Merr. (753)	MesP

Spermatophyta	Life form
Dysoxylum arborescens (Bl.) Miq. (664)	MesP
Dysoxylum cumingianum C. DC. (316)	MesP
Reinwardtiodendron humile (Hassk.) Mabb. (965)	MesP
Toona calantas Merr. & Rolfe (918)	MacP
Vavaea amicorum Benth. (273)	NP
Walsura cf. pinnata Hassk. (2082)	MesP
Menispermaceae Arcangelisia flava (L.) Merr. (1798)	el PL
Monimiaceae	
Matthaea pubescens Merr. (139)	MiP
Moraceae	
Ficus aurita Bl. (210)	MiP
Artocarpus blancoi (Elm.) Merr. (1701) VU	MacP
Artocarpus elastica Reinw. ex Bl. (697)	MacP
Ficus balete Merr. (v)	MacP
Ficus benjamina L. (1075)	MacP
Ficus cumingii Miq. var. angustissima (Merr.) Corner (778)	MesP
Ficus fistulosa Reinw. ex Bl. (1307)	MiP
Ficus heteropoda Miq. (425)	MiP
Ficus odorata (Blco.) Merr.	MesP
Ficus pedunculosa Miq. (1780)	MiP
Ficus pseudopalma Blco.	NP
Ficus punctata Thunb. (406)	r PL
Ficus ribes Reinw. ex Bl. (405)	MiP
Ficus ruficaulis Merr.	MesP
Ficus subulata Bl. (646, 1966)	PL
Ficus ulmifolia Lam. (451) VU	MesP
Maclura cochinchinensis (Lour.) Corner (1417)	d PL
Streblus ilicifolia (Vid.) Corner (1700)	MesP
Streblus macrophyllus Bl. (216, 335, 613)	MesP
Myristicaceae	
<i>Endocomia macrocoma</i> (Miq.) W.J.J. de Wilde subsp. <i>prainii</i> (King) W.J.J.de Wilde (479)	MesP
<i>Gymnacranthera farquhariana</i> (Hook. f. & Th) Warb. var. <i>paniculata</i> (A. DC.) R. Schouten (541)	MesP
Horsfieldia cf. costulata (Miq.) Warb. (2002)	MesP
Knema glomerata (Blco.) Merr. (641)	MesP
Knema stellata Merr. (1481)	MesP
Myristica cf. frugifera W. J. J. de Wilde (743) VU	MesP
Myristica cf. philippensis Lam. VU	MesP
Myristica simiarum A. DC cf ssp. simiarum (417)	MesP
Myrsinaceae	
Ardisia pardalina Mez. (815)	Ch frut
Ardisia squamulosa Presl (204) VU	Ch frut
Maesa denticulata Mez (241)	MiP
Myrtaceae	19111
Acmena acuminatissima (Bl.) Merr. & Perry (503)	MacP

Spermatophyta	Life form
Syzygium cf. densinervium (Merr.) Merr. (749) Syzygium cf. xanthophyllum (C.B. Rob.) Merr. Syzygium cumini (L.) Skeel Tristaniopsis decorticata (Merr.) P.G. Wilson & J.T. Waterh. (142) VU Tristaniopsis micrantha (Merr.) P.G. Wilson & J.T. Waterh. (301)	MesP MesP MesP MesP
Xanthostemon verdugonianus Naves (2209) VU	MacP
Ochnaceae Gomphia serrata (Gaertn.) Kanis	MesP
Olacaceae Erythropalum scandens Bl. (780) Strombosia philippinensis (Baill.) Rolfe (380)	el PL MesP
Oleaceae Olea borneensis Boerl. (306)	MesP
Opiliaceae Champereia manillana (Bl.) Merr. (100) Melientha suavis Pierre ssp. suavis (366)	MesP MesP
Orchidaceae Calanthe triplicata (Willem.) Ames Ceratostylis retisquama Rchb. f.B143 Cymbidium aliciae Quis. (880) Eulophia zollingeri (Reichb.f.) J.J.Smith Grammatophyllum multiflorum var. tigrinum Lindley. Lepidogyne longifolia (Bl.) Bl. Liparis wenzelii Ames Phalaenopsis hieroglyphica (Rchb. f.) Sweet Robiquetia cf. compressa Schltr. Trichoglottis latisepala Ames Trichoglottis rosea (Lindl.) Ames (1055)	G rhiz E G rhiz E G rhiz G rhiz E E E E
Pandanaceae Freycinetia cf. philippinensis Hemsl. (1353) Freycinetia cumingiana Gaudich. (388, 1234) Freycinetia multiflora Merr. (1130) Freycinetia vidalii Hemsl. (1352) Freycinetia membranifolia Elm. (955)	r PL r PL r PL r PL r PL
Pentaphragmataceae Pentaphragma grandiflorum Kurz (457, 458, 1407)	Ch herb
Piperaceae Piper abbreviatum Opiz (638) Piper halconense C. CD. Piper toppingii C. CD. (654, 1143) Piper viminale Opiz (1205)	st PL st PL st PL st PL
Pittosporaceae Pittosporum resiniferum Hemsl. (448)	Mesp

Spermatophyta	Life form
Poaceae	
Bambusa spinosa Roxb.	MesP
Dinochloa cf. pubiramea Gamble	PL
Dinochloa cf. scandens (Bl.) O. Ktze.	PL
Podocarpaceae	
Podocarpus rumphii Bl. (1520)	MacP
Polygalaceae	
Polygala venenosa Juss. ex Poir. (284, 2011)	Ch herb
Xanthophyllum vitellinum (Bl.) Dietr. (992)	MesP
Proteaceae	
Helicia graciliflora Merr. (1154)	MiP
Helicia loranthoides Presl. (1079)	MesP
Helicia robusta (Roxb.) R. Br. ex Wall. (588)	MiP
Ranunculaceae	
Clematis javana DC. (159, 1997)	PL
Rhamnaceae	
Ventilago dichotoma (Blco.) Merr. (723)	PL
Ziziphus angustifolius (Miq.) Hatusima ex Steenis (488)	MesP
Ziziphus crebrivenosa C.B. Rob. (492, 661)	d PL
Rhizophoraceae	
Gynotroches axillaris Bl. (1538)	MacP
Rosaceae	
Prunus arborea (Bl.) Kalkm. var. arborea (1624)	MesP
Prunus cf. fragrans (Elm.) Kalkm. (795)	MesP
Prunus grisea (Bl.) Kalkm. var. grisea (71, 490)	MesP
Rubus fraxinifolius Poiret (2017)	d PL suff
Rubiaceae	
Boholia nematostylis Merr. (1919)	Ch herb
Canthium gynochthodes Baill. (563)	MesP
Diodia ocynifolia (Willd.) Brem. (1424)	PL
Diplospora cf. fasciculiflora Elm. (663)	MiP
Dolicholobium philippinense Trenteuse (260)	MiP
Greeniopsis multiflora (Elm.) Merr. (279)	MesP
Hedyotis baruensis (Miq.) Val. ex Merr. (329)	Ch herb
Hypobathrum purpureum (Elm.) Merr. (1507)	MesP
Ixora bartlingii Elm. (1060)	Mip
Ixora cf. cumingiana Vidal (509)	MiP
Ixora cf. macrophylla Bartl. (207)	MiP
Ixora longistipula Merr. (1122)	MiP
Ixora macrophylla Barth.	MiP
Ixora salicifolia (Bl.) DC. (288)	NP
Lasianthus cf. obliquinerva Merr. (701)	MiP
Morinda bracteata Roxb. (326)	MiP
Mussaenda philippica A. Rich.	MiP
Mussaenda vidallii Elm. (129)	MiP
Mycetia javanica (Bl.) Korth. (258)	Ch suff
Nauclea subdita (Korth.) Stend. (1958)	MiP

1294		

Spermatophyta	Life form
Neonauclea formicaria (Elm.) Merr. (793) Neonauclea lanceolata (Bl.) Merr. subsp. gracilis (Vidal) Ridsdale (402)	MiP MesP
Praravinia cf. mindanensis (Elm.) Brem. (289)	NP
Psychotria cf. ixoroides Bartl. ex DC. (515)	st PL
Psychotria membranifolia Bartl. ex DC. (257)	NP
Tarenna cumingiana (Vid.) Elm. (464)	MesP
<i>Tarrenoidea wallichii</i> (Hook. f.) D.D.Tirvengadum & C. Sastre (307)	MesP
Timonius arboreus Merr. (248)	MiP
Uncaria cf. perrottetii (A. Rich.) Merr. (325)	el PL
Uncaria lanosa Wall. f. philippinensis (Elm.) Ridsd. (900)	el PL el PL
Uncaria longiflora (Poir.) Merr. (1300)	
Wendlandia luzoniensis DC. (444)	MesP NP
Xanthophytum fruticulosum Reinw. ex Bl. (1005)	NP
Rutaceae Clausena anisum–olens (Blco.) Merr. (605)	NP
Lunasia amara Blco. (158)	NP
Micromelum compressum (Blco.) Merr. (771)	NP
Severinia disticha (Blco) Merr. (398)	NP
Sapindaceae	
Allophyllus cobbe (L.) Raeuschel (823)	MesP
Cubilia cubili (Blco.) Adelh. (586)	MacP
Dictyoneura acuminata Bl. ssp. acuminata (246)	MesP
Dimocarpus fumatus (Bl.) Leenhouts ssp. philippinensis Leenhouts (72)	MesP
Euphorianthus obtusatus Radlk. ex Koord. (1641)	MesP
Ganophyllum falcatum Bl. (1212)	MesP
Guioa cf. diplopetala (Hassk.) Radlk. (1104)	MesP
Harpullia cupanioides Roxb. (212)	MesP
Lepisanthes fruticosa (Roxb.) Leenh. (933)	MesP
Nephelium cf. ramboutan-ake (Labill.) Leenh. (442)	MesP
Paranephelium cf. xestophyllum Miq. (727)	MesP
Pometia pinnata Forst. (578, 1546)	MesP
Sapotaceae	
Palaquium philippense (Perr.) C. B. Rob. (443) VU	MacP
Planchonella mindanaensis Clemens (1126)	MacP
Pouteria firma (Miq.) Baehni (1237)	MacP
Saxifragaceae	~ ~
Dichroa philippinensis Schltr.	Ch frut
Polyosma integrifolia Bl. (1219)	NP
Dichroa fibrifuga (807)	
Simaroubaceae	M. D
Picrasma javanica Bl. (218)	MesP
Solanaceae	01.1.1
Solanum anisophyllum Elm. (225)	Ch herb
Solanum ferox L. (282)	Ch herb
Sonneratiaceae	M
Duabanga moluccana Bl.	MacP

Spermatophyta	Life form
Staphyleaceae	
Turpinia borneensis (Merr. & Perry) B.L. Linden (1802)	MesP
Sterculiaceae	
Heritiera sylvatica Vidal (1768)	MesP
Pterocymbium tinctorium (Blco.) Merr. (345)	MacP
Pterospermum diversifolium Bl. (270)	MesP
Pterospermum elongatum Korth. (434)	MesP
Pterospermum obliquum Blco. (120) Storgelie multigimularie Elm. (251)	MesP MiP
Sterculia multistipularis Elm. (251) Sterculia oblongata R. Br. (678)	MesP
Sterculia philippinensis Merr. (1898)	MesP
Sterculia stipulata Korth. var. jagorii (Warb.) Tantra	MesP
	WICSI
Symplocaceae	M. D
Symplocos cochinchinensis(Lour.) Moore var. cochinchinensis (1954)	MicP
Taccaceae	
Tacca palmata Bl. (303)	G rhiz
Theaceae	
Eurya acuminata DC. (1314)	NP
Ternstroemia philippinensis Merr. var. philippinensis (1491)	MesP
Thumalaaaaaa	
Thymelaeaceae Aquilaria cumingiana (Decn) Ridl. (300)	NP
Phaleria perrottetiana (Dcne) FVill. (160)	Ch suff
	Chi Sun
Tiliaceae	
Colona serratifolia Cav. (626)	MesP
Diplodiscus paniculatus Turcz. (271) VU	MesP
Ulmaceae	
Celtis cf. philippinensis Blanco	MesP
Gironniera celtidifolia Gaudich. (238)	MiP
Trema orientalis (L.) Bl. (2202)	MesP
Urticaceae	
Cypholophus moluccanus (Bl.) Miq.	Ch frut
Leucosyke capitellata (Poir.) Wedd. (242)	MiP
Maoutia setosa Wedd.	NP
Villebrunea rubescens (Bl.) Bl. (324)	MesP
Villebrunea trinervis Wedd. (733)	MesP
Verbenaceae	
Clerodendrum villosum Bl.	NP
Teijsmanniodendron pteropodum (Miq.) Bakh. (157)	MesP
Vitex parviflora Juss. (1837)	MacP
Vitex turczaninowii Merr. (705)	MacP
Premna odorata Blco. (633)	MesP

Ptaridophyta	Life form
Aspidiaceae <i>Didymochlaena</i> cf. <i>truncatula</i> (Sw.) J. Sm. (2056)	Ch herb
Aspleniaceae Asplenium nidus L. (1902) Asplenium tenerum Forst. (2096)	Ch herb Ch herb
Athyriaceae Diplazium asperum (Bl.) Milde (1809) Diplazium esculentum (Retz.) Sw. (1846)	Ch herb Ch herb
Cyatheaceae Cyathea cf. contaminans (Hook.) Copel.	MesP
Davalliaceae Davallia solida (G. Forst.) Sw. (1462) Davallia trichomanoides Bl. var. lorrainii (Hance) Holttum (222)	Ch herb Ch herb
Hymenophyllaceae Trichomanes javanicum Bl. (1042)	Ch herb
Lindsaeaceae Lindsaea lucida Bl. ssp. lucida (533) Sphenomeris chinensis (L.) Maxon Tapeinidium pinnatum (Cav.) C.Chr. (1267)	Ch herb Ch herb Ch herb
Lomariopsidaceae Bolbitis cf. guoyana (Gaudich.) Ching (2016) Bolbitis guoyana (Gaudich.) Ching Bolbitis heteroclita (Presl) Ching (1049) Lomogramma cf. copelandii Holttum (1851) Lomogramma copelandii Holttum Teratophyllum arthropteroides (Christ) Holttum (2084) Teratophyllum cf. articulatum (J. Sm. ex Fèe) Mett. (516)	Ch herb Ch herb r PL r PL r PL Ch herb Ch herb
Osmundaceae Osmunda banksiaefolia (Pr.) Kuhn (1261, 1392)	Ch herb
Polypodiaceae Drynaria quercifolia (L.) J. Sm Leptochilus cf. decurrens Bl. Microsorum cf. longissimum J. Sm. ex Fée (964) Microsorum membranifolium (R. Br.) Ching Microsorum punctatum (L.) Copel. (1821) Microsorum scolopendria (Burm. f.) Copel. (1445) Pyrrosia cf. lanceolata (L.) Farwell Microsorum plukenetii (Presl) M.G. Price (1860)	E Ch herb Ch herb Ch herb Ch herb Ch herb PL
Pteridaceae Pteris cf. pellucida Presl Pteris ensiformis Burm. f. (1806) Pteris longipinnula Wall. (334)	Ch herb Ch herb Ch herb
Schizaeaceae Lygodium auriculatum (Willd.) Alst. et Holtt. (1974) Lygodium circinnatum (Burm. f.) Sw. (1603)	st PL st PL

Ptaridophyta	Life form
Selaginellaceae Selaginella cf. involvens (Sw.) Spring (856) Selaginella cf. springiana Alderw. (1526) Selaginella cupressina (Willd.) Spring (745) Selaginella engleri Hieron. (1011)	Ch frut Ch frut Ch frut Ch frut
Taenitidaceae <i>Taenitis blechnoides</i> (Willd.) Sw. (1091)	Ch herb
Tectaria group Ctenitis cf. silvatica Holttum (939) Cyclopeltis crenata (Fée) C. Chr. (1807) Pleocnemia cf. presliana Holttum (1849) Pleocnemia irregularis (Presl) Holttum (1007) Tectaria crenata Cav. (1301)	Ch herb Ch herb Ch herb Ch herb Ch herb
Thelypteridaceae Cyclosorus sumatranus (v. Ald. v. Ros.) Ching Pneumatopteris laevis (Mett.) Holttum (1812) Pronephrium×xiphioides (Christ) Holttum (498) Pseudophegopteris paludosa (Bl.) Ching (2093) Pronephrium granulosum (Presl) Holtt. (997)	Ch herb Ch herb Ch herb Ch herb Ch herb

References

- Anonymous 1993. Flora of Taiwan Vol. 3, Angiosperms, Dicotyledons, , 2nd edn. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan, ROC.
- Anonymous 1994. Flora of Taiwan Vol. 1, Pteridophyta, Gymnospermae, 2nd edn. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan, ROC.
- Anonymous 1996. Flora of Taiwan Vol. 2, Angiospermae, 2nd edn. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan, ROC.
- Aragones E.G. Jr. 1991. Vegetation-soil pattern along altitudinal gradient in the western slopes of Mt. Banahaw, Luzon, Philippines: I. The forest communities and changes in forest composition with altitude. Sylvatrop 1(1): 15–45.

Ashton P.S. 1993. Philippine phytogeography. Asia Life Sciences 2(1): 1-8.

- Asio V. 1996. Characteristics, weathering, formation and degradation of soils from volcanic rocks in Leyte, Philippines. Hohenheimer Bodenkundliche Hefte 33 Universität Hohenheim Institut für Bodenkunde und Standortslehre, Stuttgart, 209 pp.
- Barrera A., Aristorenas I. and Tingzon J.A. 1954. Soil Survey of Leyte Province, Philippines. Soil Survey Report No. 18, Bureau of Printing, Manila, 103 pp.
- Bremer H. 1995. Boden und Relief in den Tropen: Grundvorstellungen und Datenbank. Gebrüder Bornträger, Berlin, Stuttgart, 324 pp.
- Bremer H. 1999. Die Tropen Geographische Synthese einer fremden Welt im Umbruch. Gebrüder Bornträger, Berlin, Stuttgart, 428 pp.
- Brooks T.M., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Rylands A.B., Konstant W.R., Flick P., Pilgrim J., Oldfield S., Magin G. and Hilton-Taylor C. 2002. Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16(4): 909–923.

- Brown W.H. 1919. Vegetation of Philippine Mountains: The Relation between the Environment and Physical Types at Different Altitudes. Bureau of Science, Manila, 434 pp.
- Brown W.H. and Mathews D.M. 1914. Philippine dipterocarps forests. Philippine Journal of Science A 9(5): 413–561.
- Buot I.E. Jr. and Okitsu S. 1997. Woody species composition in the altitudinal zones of the mossy forest of Mt. Pulog, Luzon, Philippines. Flora Malesiana Bulletin 12(1): 6–11.
- Burger D. 1972. Seedlings of Some Tropical Trees and Shrubs Mainly of South East Asia. Pudoc, Wageningen, 399 pp.
- Cain S.A., de Oliveira Castro G.M., Pires J.M. and da Silva N.T. 1956. Application of some phytosociological techniques to Brazilian rain forest. American Journal of Botany 43: 911–941.
- Cheek M. and Jebb M. 2001. Nepenthaceae. Flora Malesiana Vol. 15, Nationaal Herbarium Nederland, Universiteit Leiden Branch, the Netherlands, 164 pp.
- Corner E.J.H. 1988. Wayside Trees of Malaya. Vol. 1 and 2. Malayan Nature Society, Kuala Lumpur, 774 pp.
- Cromer D.A.N. and Pryor L.D. 1942. A contribution to rain-forest ecology. Proceedings of the Linnean Society 67: 249–268.
- Dargantes B.B. and Koch W. 1994. Case studies on the occupation and cultivation of the forest lands of Leyte, Philippines. Annals of Tropical Research 16: 13–29.
- Davis S.D., Heywood V.H. and Hamilton A.C. (eds) 1995. Centres of Plant Diversity A Guide and Strategy for their Conservation, Vol. 2: Asia, Australasia and the Pacific. IUCN Publications Unit, Cambridge, UK.
- de Guzman E.D., Umali R.M. and Sotalbo E.D. 1986. Guide to Philippine Flora and Fauna, Vol.
 3: Dipterocarps, Non-Dipterocarps. Natural Resources Management Center, Ministry of Natural Resources and University of the Philippines, 414 pp.
- DENR 1998. Philippine atlas. Department of Environment and Natural Resources (DENR), Quezon City, Philippines.
- DENR and UNEP 1997. Philippine Biodiversity: An Assessment and Action Plan. Bookmark Inc., Makati City, The Philippines, 298 pp.
- Dransfield J. 1990. Outstanding problems in Malesian palms. In: Baas P., Kalkmann K. and Geesink R. (eds), The Plant Diversity of Malesia, Proceedings of the Flora Malesiana Symposium, Leiden, the Netherlands, August 1989. Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 17–25.
- Duivenvoorden J.F. 1994. Vascular plant species counts in the rain forests of the middle Caquetá area. Colombian Amazonia. Biodiversity and Conservation 3: 685–715.
- Ellenberg H. and Mueller-Dombois D. 1967. A key to Raunkiaer plant life forms with revised subdivisions. Berichte des geobotanischen Instituts Rübel 37: 56–73.
- FAO 2003. State of the World's Forests 2003. FAO, Rome, Italy. www.fao.org/DOCREP/005/ Y7581E/Y7581E00.HTM, accessed 25 February 2004.
- FAO/UNESCO 1988. Soil Map of the World, Revised Legend. World Soil Resources Report 60. FAO, Rome.
- Gentry A.H. and Dodson C. 1987. Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19(2): 149–56.
- Gonzales-Salcedo P.V. 2001. Floral diversity and vegetation zones of the northern slope of Province, Luzon, Philippines. Asia Life Sciences 10(2): 119–157.
- Gruezo W.S. 1998. Species alpha diversity of Pagbilao Grande Island vegetations, Quezon Province, Philippines. Asia Life Sciences 7(1): 39–92.
- Hall J.B. and Swaine M.D. 1981. Distribution and Ecology of Vascular Plants in a Tropical Rain Forest: Forest Vegetation in Ghana. Dr. W. Junk Publishers, The Hague.
- Hamann A., Barbon E.B., Curio E. and Madulid D.A. 1999. A botanical inventory of a submontane tropical rainforest on Negros Island, Philippines. Biodiversity and Conservation 8: 1017–1031.
- Heaney L. and Regalado J.C. Jr. 1998. Vanishing Treasures of the Philippine Rain Forest: A Comprehensive Introduction to the Biodiversity of the Philippines. The Field Museum University of Chicago Press, Chicago, 88 pp.

- Henderson M.R. 1974a. Malayan Wild Flowers: Monocotyledons, reprint of the 1954 edition. The Malayan Nature Society, Kuala Lumpur, Malaysia, 357+27 pp.
- Henderson M.R. 1974b. Malayan Wild Flowers: Dicotyledons, Reprint. The Malayan Nature Society, Kuala Lumpur, Malaysia, 478 pp.
- Ingle N. 2003. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation. Oecologia 134: 251–261.

IUCN 2000. Red List - Philippines. www.iucnredlist.org/search-basic.html. Accessed 14.01.2004.

- Kartawinata K. 1990. A review of natural vegetation studies in Malesia, with special reference to Indonesia. In: Baas P., Kalkmann K. and Geesink R. (eds), The Plant Diversity of Malesia, Proceedings of the Flora Malesiana Symposium, Leiden, the Netherlands, August 1989. Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 120–132.
- Keller R. 1996. Identification of Tropical Woody Plants in the Absence of Flowers and Fruits. Birkhäuser Verlag, Basel, Boston, Berlin, 229 pp.
- Keng H. 1983. Orders and Families of Malayan Seed Plants, 3rd edn. Singapore University Press, National University of Singapore, 441 pp.
- Keng H. 1990. The Concise Flora of Singapore: Gymnosperms and Dicotyledons. Singapore University Press, National University of Singapore, Singapore, 222 pp.
- Kent M. and Coker P. 1992. Vegetation Description and Analysis. Belhaven Press, London, 363 pp.
- Kiew R. 1987. The herbaceous flora of Ulu Endau, Johore-Pahang, Malaysia, including taxonomic notes and descriptions of new species. Malayan Nature Journal 41(2 and 3): 201–234.
- Kintanar R.L. 1984. Climate of the Philippines. PAGASA, Quezon City, Philippines, September 1984, 38 pp.
- Kochummen K.M., LaFrankie J.V. and Manokaran N. 1992. Floristic composition of Pasoh Forest Reserve, a lowland rainforest in peninsular Malaysia. In: Kheong Y.S. and Win L.S. (eds), In Harmony with Nature, Proceedings of the International Conference on Conservation of Tropical Biodiversity, Kuala Lumpur, Malaysia, 12–16 June 1990. Malayan Nature Society, Kuala Lumpur, Malaysia, pp. 545–554.
- Lieberman D., Lieberman M., Peralta R. and Hartshorn G.S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137–152.
 Magurran A.E. 1988. Ecological Diversity and Its Measurement. Chapman and Hall, London, 179
- Manokaran N. and Kochummen K.M. 1990. A re-examination of data on structure and floristic composition of hill and lowland dipterocarp forest in peninsular Malaysia. Malayan Nature Journal 44: 61–75.

pp.

- Meijer W. 1959. Plantsociological analysis of montane rainforest near Tjibodas, West Java. Acta Botanica Neerlandica 8: 277–291.
- Merrill E.D. 1912. A Flora of Manila. Department of the Interior, Bureau of Science, Manila, 491 pp.
- Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B. and Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.
- Newbery D.McC., Campbell E.J.F., Proctor J. and Still M.J. 1996. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia. Species composition and patterns in the understorey. Vegetatio 122: 193–220.
- Ng F.S.P. (ed.) 1978. Tree Flora of Malaya Vol. 3. Forest Department, Ministry of Agriculture and Lands, Malaysia, Longman Singapore, 339 pp.
- Ng F.S.P. (ed.) 1989. Tree Flora of Malaya Vol. 4. Forest Department, Ministry of Agriculture and Lands, Malaysia, Longman Malaysia, 548 pp.
- Ng F.S.P. 1991. Manual of Forest Fruits, Seeds and Seedlings. Vols. I and II. Malayan Forest Record No. 34. Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia, 997 pp.
- NSCB RU-8 2001. Provincial/City statwatch: Regional Unit VIII Eastern Visayas. National Statistical Coordination Board, www.nscb.gov.ph. Accessed 20.11.2003.

- Pancho J.V. 1983. Vascular Flora of Mount Makiling and Vicinity, Part 1. Kalikasan, The Philippine Journal of Biology, Supplement No. 1. New Mercury Printing Press, Quezon City, Philippines, 476 pp.
- Pipoly J.J.III and Madulid D.A. 1998. Composition, structure and species richness of a submontane moist forest on Mt. Kinasalapi, Mindanao, Philippines. In: Dallmeier F. and Comiskey J.A. (eds), Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies. UNESCO and The Parthenon Publishing Group Limited, Carnforth, UK, UNESCO, France, pp. 591–600.
- Poulsen A.D. 1996. Species richness and density of ground herbs within a plot of lowland rainforest in north-west Borneo. Journal of Tropical Ecology 12: 177–190.
- Poulsen A.D. and Balslev H. 1991. Abundance and cover of ground herbs in an Amazonian rain forest. Journal of Vegetation Science 2: 315–322.
- Proctor J., Argent G.C. and Madulid D.A. 1998. Forests of the ultramufic Mt. Giting-Giting, Sibuyan Island, the Philippines. Edinburgh Journal of Botany 55(2): 295–316.
- Raunkiaer C. 1934. The Life-forms of Plants and Statistical Plant Geography. Oxford University Press, Oxford.
- Rennolls K. and Laumonier Y. 2000. Species diversity structure analysis at two sites in the tropical rain forest of Sumatra. Journal of Tropical Ecology 16: 253–270.
- Richards P.W. 1996. The Tropical Rain Forest: An Ecological Study. Cambridge University Press, Great Britain, 575 pp.
- Richter M. 1997. Allgemeine Pflanzengeographie. B.G. Teubner, Stuttgart, 256 pp.
- Santos J.V., de Guzman E.D. and Fernando E.S. 1986. Guide to Philippine Flora and Fauna. Vol. IV: Bamboos, Grasses, Palms. Natural Resources Management Center, Ministry of Natural Resources and University of the Philippines, JMC Press, Incorporated, Quezon City, Philippines, 256 pp.
- Schulze M.D. and Whitacre D.F. 1999. A classification and ordination of the tree community of Tikal National Park, Peten, Guatemala. Bulletin of the Florida Museum of Natural History 41(3): 169–297.
- Sist P. and Saridan A. 1998. Description of the primary lowland forest of Berau. In: Bertault J.-G. and Kadir K. (eds), Silviculture research in a lowland mixed dipterocarp forest of East Kalimantan, the contribution of STREK project. CIRAD-Forêt Publication, pp. 51–93.
- Slik J.W.F., Poulsen A.D., Ashton P.S., Cannon C.H., Eichhorn K.A.O., Kartawinata K., Lanniari I., Nagamasu H., Nakagawa M., van Nieuwstadt M.G.L., Payne J., Purwaningsih, Saridan A., Sidiyasa K., Verburg R.W., Webb C.O. and Wilkie P. 2003. A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography 30: 1517–1531.
- Smith R.F. 1970. The vegetation structure of a Puerto Rican rain forest before and after short-term irradiation. In: Odum H. (ed.), A Tropical Rain Forest. Oak Ridge, Atomic Energy Commission, USA, pp. D103–140.
- Soepdadmo E. 1995. Plant diversity of the Malesian tropical rainforest and its phytogeographical and economic significance. In: Primack R.B. and Lovejoy T.E. (eds), Ecology, Conservation, and Management of Southeast Asian Rainforests. Yale University, pp. 19–40.
- Soepadmo E. and Wong K.M. (eds) 1995. Tree Flora of Sabah and Sarawak. Vol. 1. Forest Research Institute Malaysia, Sabah Forestry Department, and Sarawak Forestry Department, Ampang Press Sdn. Bhd., Kuala Lumpur, Malaysia, 513 pp.
- Soepadmo E., Wong K.M. and Saw L.G. (eds) 1996. Tree Flora of Sabah and Sarawak. Vol. 2. Forest Research Institute Malaysia, Sabah Forestry Department, and Sarawak Forestry Department. Ampang Press Sdn. Bhd., Kuala Lumpur, Malaysia, 443 pp.
- Soerianegara I. and Lemmens R.H.M.J. (eds) 1994. Plant Resources of South-East Asia No. 5(1): Timber Trees: Major Commercial Timbers. Prosea Foundation, Bogor, Indonesia and Pudoc-DLO, Wageningen, the Netherlands, 610 pp.
- Takeuchi M. 1960. A estrutura da vegetação na Amazonia III: A mata da campina na região do Rio Negro. Boletim do Museo Paraense Emilio Goeldi 8: 1–13.
- Tan B.C. and Rojo J.P. 1989. The Philippines. In: Campbell D.G. and Hammond H.D. (eds), Floristic Inventory of Tropical Countries – The Status of Plant Systematics, Collections, and

Vegetation, Plus Recommendations for the Future. New York Botanical Garden, New York, pp. 44–62.

- Turner I.M. 1994. The taxonomy and ecology of the vascular plant flora of Singapore: a statistical analysis. Bot. J. Linn. Soc. 114: 215–227.
- Valencia R., Balslev H. and Paz Y. Miño C.G. 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation 3: 21–28.
- van Balgooy M.M.J. 1997a. Malesian Seed Plants. Vol. 1: Spot-characters. Rijksherbarium /Hortus Botanicus, Leiden, 154 pp.
- van Balgooy M.M.J. 1997b. Malesian Seed Plants. Vol. 2: Portraits of Tree Families. Rijksherbarium /Hortus Botanicus, Leiden, 307 pp.
- van Steenis C.G.G.J. (ed.) 1950-ongoing. Flora Malesiana. Martinus Nijhoff Publishers, Dordrecht, the Netherlands.
- Walsh R.P.D. 1996. Climate. In: Richards P.W. (ed.), The Tropical Rainforest. Cambridge University Press, pp.159–205.
- Whitford H.N. 1906. Vegetation of the Lamao Forest Reserve. Philippine Journal of Science I: 373–431 and 637–682.
- Whitford H.N. 1911. The Forests of the Philippines. Part I: Forest Types and Products. Department of the Interior Bureau of Forestry, Bulletin No. 10, Manila, 94 pp.
- Whitmore T.C. (ed.) 1983a. Tree Flora of Malaya. Vol. 1. Corrected Reprint of the 1972 Edition. Forest Department, Ministry of Agriculture and lands, Malaysia Longman Malaysia, 473 pp.
- Whitmore T.C. (ed.) 1983b. Tree Flora of Malaya. Vol. 2. Corrected Reprint of the 1972 Edition. Forest Department, Ministry of Primary Industries, Malaysia, Longman Malaysia, 442 pp.
- Whitmore T.C. 1985. Tropical Rain Forests of the Far East. Corrected Reprint of the 1984 Edition. Clarendon Press, Oxford, 352 pp.
- Whitmore T.C., Peralta R. and Brown K. 1985. Total species count in a Costa Rican tropical rain forest. Journal of Tropical Ecology 1: 375–378.
- Wilkie P., Argent G., Cambell E. and Saridan A. 2004. The diversity of 15 ha of lowland mixed dipterocarp forest, Central Kalimantan. Biodiversity and Conservation 13(4): 695–708.
- Zamora P.M. and Co L. 1986. Guide to Philippine Flora and Fauna. Vol. II: Economic Ferns, Endemic Ferns, Gymnosperms. Natural Resources Management, Center Ministry of Natural Resources, and University of the Philippines, JMC Press, Incorporated, Quezon City, Philippines, 273 pp.
- Zikeli S. 1998. Nutrient status and nutrient cycles of the tropical rainforest, Mt. Pangasugan, Leyte, Philippines. Diploma thesis, Martin - Luther - University Halle - Wittenberg, Landwirtschaftliche Fakultaet, Institut für Bodenkunde und Pflanzenernaehrung, 100 pp.